Сравнение – выявление сходства и различия сравниваемых предметов. Например, 1) треугольник и четырехугольник общим имеют соответствие числа сторон числу углов; отличие в их количестве; 2) алгебраические и обыкновенные дроби: общее – не имеют смысла при нулевом знаменателе; наличие числителя и знаменателя; различие – в природе числителей и знаменателей.
Сравнение приводит к правильному выводу, если выполняются следующие условия: 1) сравниваемые понятия однородны; 2) сравнение осуществляется по таким признакам, которые имеют для них существенное значение. Иначе говоря, основные требования к сравнению: иметь смысл; планомерно; полно.
Сравнение – почва для аналогии (греческое – соответствие, сходство), которая осуществляется по схеме:
А обладает свойствами a, b, c, d
В обладает свойствами a, b, c
Вероятно В обладает и свойством d.
Заключение по аналогии правдоподобно, но не достоверно, поэтому аналогия не является доказательным рассуждением.
Часто та или иная последовательность в изучении учебного материала обосновывается возможностью использования аналогии в обучении:1) натуральные числа и десятичные дроби; 2) если a||b и a^b, то b^c – теорема на плоскости и в пространстве. Когда будет верным обратное утверждение: a^b и b^c Þ a||b
Недостаток в нашей практике обучения – мы не учим ребят опровержению. В качестве опровержения обратному утверждению пространстве может служить пример (см. рисунок).
![]() |
Поиск сходства – путь к плодотворным рассуждениям по аналогии. Например, треугольник и тетраэдр имеют сходство минимальности линий на плоскости и плоскостей в пространстве; биссектрисы треугольника пересекаются в центре вписанной в него окружности и биссекторные плоскости двугранных углов тетраэдра пересекаются в центре вписанного в него шара.
Следует различать полезную и вредную аналогии.
Полезная аналогия: прямоугольник – прямоугольный параллелепипед;
окружность – сфера;
прямая на плоскости – плоскость в пространстве.
Вредная аналогия: - "аналогия" с основным свойством дроби;
- "аналогия" с извлечением корня из произведения
Обобщение и специализация, абстрагирование и конкретизация.
Обобщение – мысленное выделение, фиксирование каких-нибудь общих существенных свойств, принадлежащих только данному классу предметов или отношений.
Абстрагирование – это мысленное отвлечение, отделение общих, существенных свойств, выделенных в результате обобщения, от прочих несущественных (с математической точки зрения) или не общих свойств рассматриваемых предметов или отношений и отбрасывание.
Абстрагирование не может осуществляться без обобщения, без выделения того общего, существенного, что подлежит абстрагированию. Абстрагирование и обобщение неизменно применяются в процессе формирования понятий, при переходе от представлений к понятиям и, вместе с индукцией, как эвристический метод.
Под обобщением понимают также переход от единичного к общему, от менее общего к более общему.
Примеры: обобщения. 1) Изучение формулы n-го члена арифметической прогрессии начинается с рассмотрения конкретных примеров на вычисление различных членов арифметической прогрессии по заданному первому ее члену и разности. При проведении этих вычислений учащиеся используют равенства: Естественно возникает полезное обобщение этих равенств в одной форму
.
NÌZÌQÌRÌC.
При обобщении а)замене постоянной на переменную; б)снятие ограничений:
Похожие статьи:
Ориентация образования не на формальное накопление знаний, а на развитие
способностей обучающихся, их мышления путём активизации их познавательных
потребностей и возможностей
Высказываний студентов, не исчерпывают содержания и функций ориентации образования не на формальное накопление знаний, а на развитие способностей обучающихся, их мышления путём активизации их познавательных потребностей и возможностей. Данная ориентация должна быть сформирована в результате детальн ...
Использование методов стимулирования в современной школе
Педагогический процесс характеризуется разносторонностью содержания, исключительным богатством и мобильностью организованных форм. С этим непосредственно связано многообразие методов осуществления педагогического процесса. Есть методы, отражающие содержание и специфику обучения, а так же воспитания ...
Классификация методов обучения физической культуре в
начальной школе
Одной из острых проблем современной дидактики является проблема классификации методов обучения. В настоящее время нет единой точки зрения по этому вопросу. В связи с тем, что разные авторы в основу подразделения методов обучения на группы и подгруппы кладут разные признаки, существует ряд классифик ...